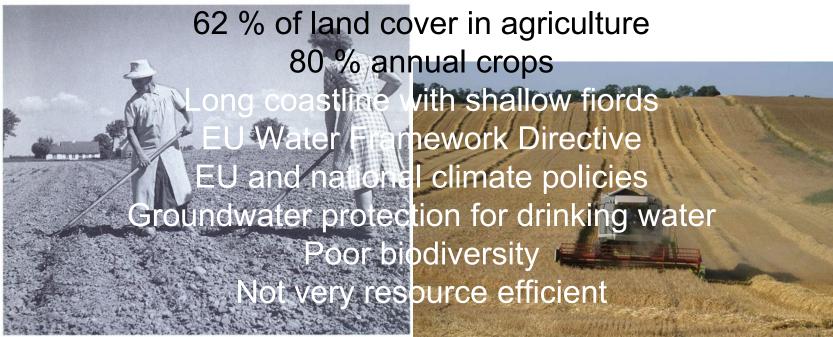
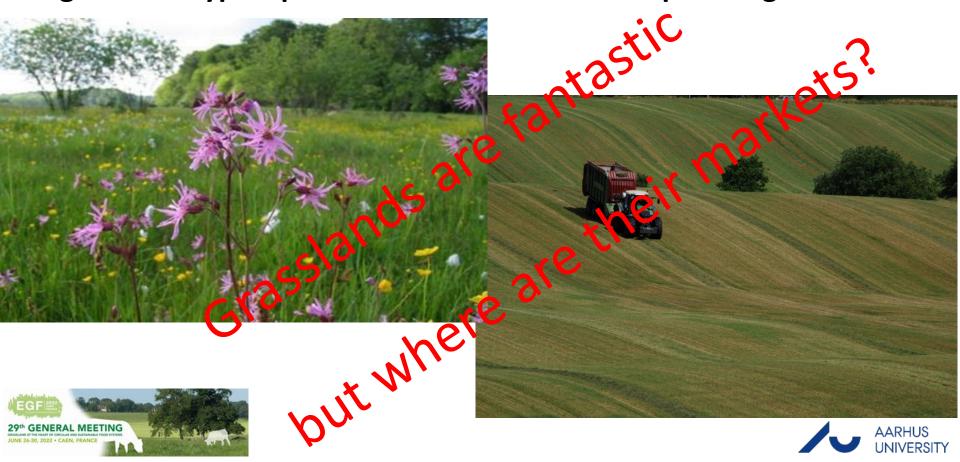
Coupling the benefits of grassland crops and green biorefining to produce protein, products and services for the green transition

Uffe Jørgensen^{1,4}, Søren Krogh Jensen^{2,4} & Morten Ambye-Jensen^{3,4} ¹Department of Agroecology, ²Department of Animal Science, ³Department of Biological and Chemical Engineering, ⁴Aarhus University Centre for Circular Bioeconomy, Denmark



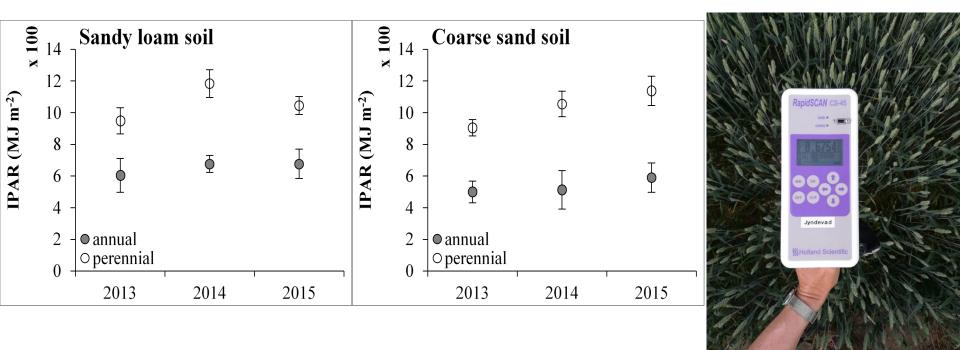
EGF 2022. Session 2

Danish (and European) agriculture has developed a lot However, is highly contested

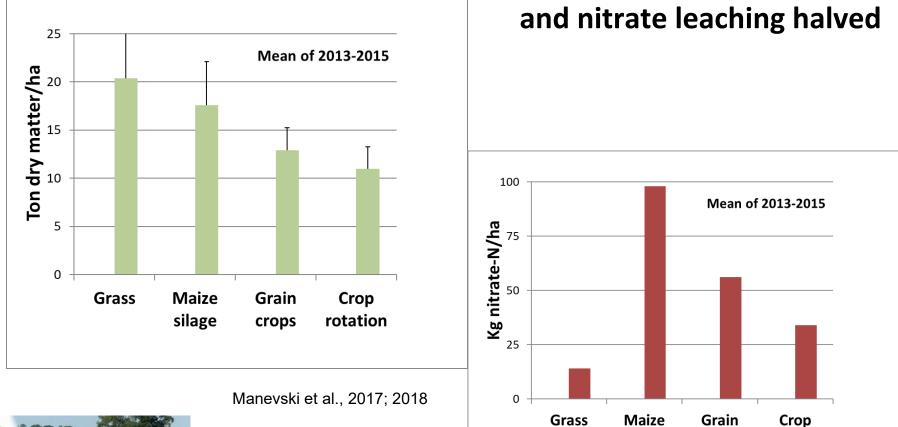


CBIO ARHUS UNIVERSITY CENTRE FOR CIRCULAR BIOECONOMY

Grasslands provide ecosystem services, which differ between grassland types: permanent undisturbed – improved grasslands

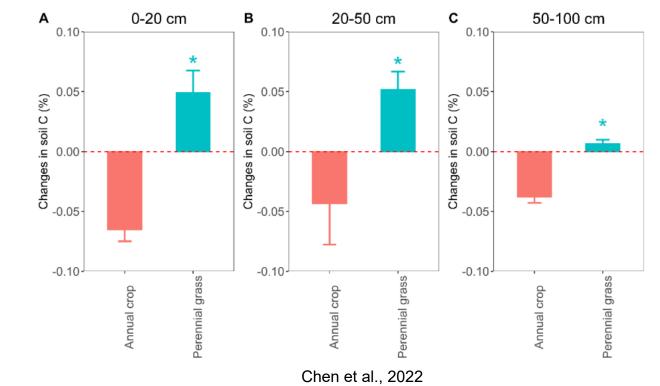

Field experiments at Aarhus University since 2012 on the effects of cropping systems on productivity (carbon capture) and environment

Annual intercepted PAR almost double in grasses compared with annual crops



Manevski et al., 2017

Biomass production (carbon capture) can be doubled


silage

crops

rotation

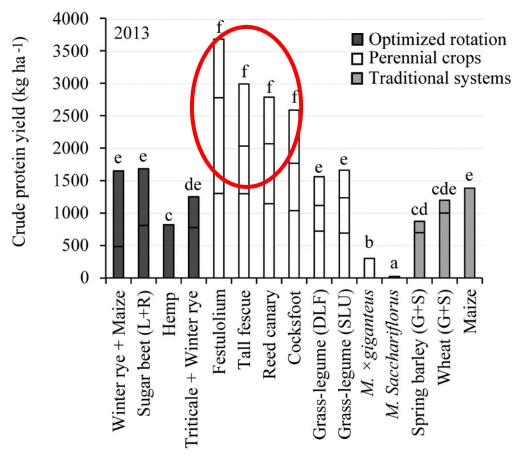
Significant difference in soil C change over 5 years between annual and perennial crops – new samples are now taken after 10 years

More environmental benefits from conversion of annual crops to grass, clover or alfalfa

- Reduced soil erosion
- Reduced GHG emission (0.5-3.5 ton CO₂-equiv/ha)
- Reduced pesticide use (by factor 40-50)
- Increased biodiversity
- Increased infiltration capacity

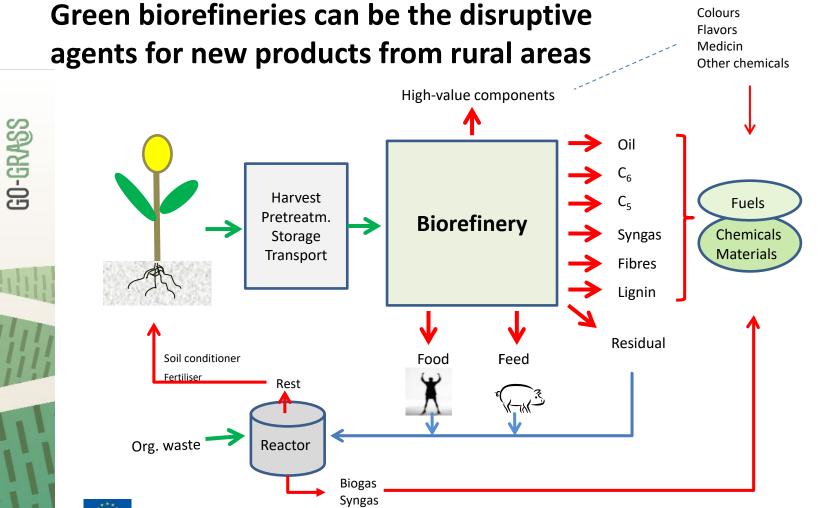
Børgesen et al., DCA Report No. 131, 2018

So, what to do with all that grass?



GO-GRASS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 862674


High crude protein content in grasses may be utilised

Solati et al., 2018

GO-GRASS

 $\langle \gamma \rangle$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 862674

The main products from green biorefineries

Pulp (60-70 % of DM; 30-60 % of protein)

- Cattle feed
- Fiber for energy production (Biogas, Biochar, etc)
- Fiber for lignin production
- Fiber for insulation
- Fiber for production of oligosaccharides

Precipitated protein (20-30 % of DM; 40-70 % of protein)

- Protein concentrate as feed for monogastrics
- White protein concentrate for food purposes

Brown juice (10-20 % of DM; 5-10 % of protein, 10-15 % of total N)

- Inorganic salts / fertilizer
- Organic matter for biogas production
- Speciality compounds
 - (vitamins, phytoestrogens, saponins etc)

Feeding experiment with green protein to pigs, cows, broilers & egg layers – positive results!

Chemical composition of green protein with 46% and 56% protein respectively and dehulled soybean meal

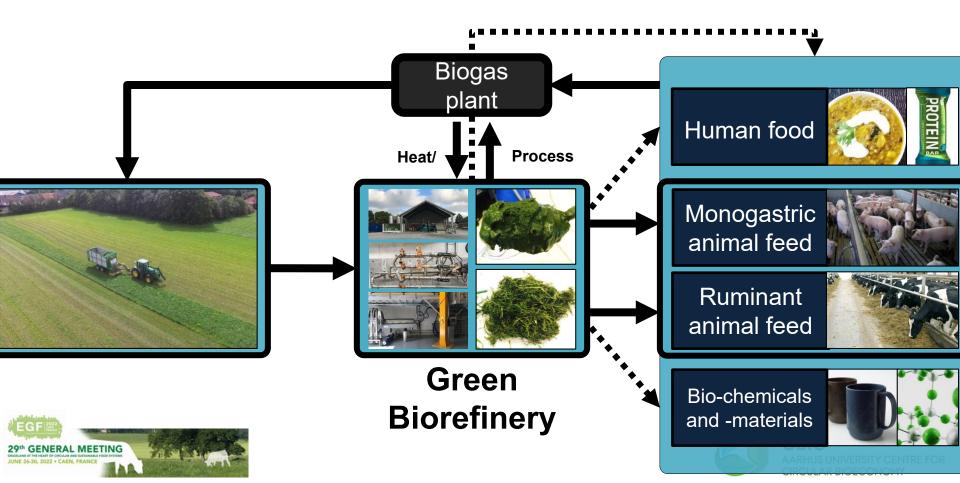
On DM basis	Protein, 46%	Protein, 56%	Soybean meal
DM, %	97.4	92.32	87.2
Crude protein,	45.8	56.2	52.4
%			
Lipids, %	10.6	13.8	2.9
Ash, %	12.1	8.30	8.14
Total Dietary	29.7	Na ²⁾	Na ²⁾
fibre, %			
Amino acids,			
g/16 g N			
Lys	5.76	5.75	6.29
Met	2.27	2.03	1.36
Met + Cys	2.73	2.72	2.79
Thr	5.02	4.60	4.06
Trp	2.42	2.21	1.38
EDOMi ¹⁾ , %	67.9	72.8	77.8

ENTRE FOR

Feeding experiment with pulp to dairy cattle compared with grass clover

More details on effects of vegetation stage and number of pulpings in upcoming paper

Feed	Pulp silage	Grass clover silage
DM, %	28	52
Crude Protein, %	18	16
Ash, %	9.3	9.4
NDF, %	45	39
In-vitro dig. OM, %	70	72
DM intake, kg/day	23.0	22.7 ²⁾
ECM ¹⁾ , kg/day	37.0	33.5 ²⁾
In-vivo digestibility		
C , %	73	70 ²⁾
NDF, %	63	54 ²⁾
Fullein, %	66	60 ²⁾


¹⁾ ECM = Energy Corrected Milk yield; ²⁾ Significant different from pulp silage

AARHUS UNIVERSITY CENTRE FOR CIRCULAR BIOECONOMY

Status of grass biorefining development

Example economics in a production scenario

Capacity assumptions:

- 40 ton fresh biomass/hour
- 21.600 t dry matter/year
- 3000 operational hours/year
- In combination with existing biogas plant

Economic assumptions:

- Biorefinery CAPEX : 3.36 mio EUR
- Depreciation time: 15 year
- 5% Interest rate , 5% Maintenance

• Grass price

- Organic:
- Conventional:
- <u>Protein price</u>
- Organic:
- Conventional:
- Fiber pulp price
- Identical to grass price
- Residual juice is not given either any cost or value -It is used for internal energy production at the biogas plant.

Production		
Protein concentrate	3.643*	t DM/yr
Fiber pulp	15.034*	t DM/yr
Rest juice	2.924*	t DM/yr
* Based on assumed production efficiencies		

Economy		
, i i i i i i i i i i i i i i i i i i i	Scenario	
	Organic	Conventional
	Mio. EUR	Mio. EUR
Income		
Protein concentrate/Fiber	4.70	3.25
Expenses		
Grass	3.33	2.90
Energy and salary	0.19	0.19
Maintenance	0.17	0.17
Depreciation and interest	0.32	0.32
Result	0.66	-0.34

0.67 EUR/kg 0.34 EUR/kg

0.15 EUR/kg

0.13 EUR/kg

Green biorefinery demo-plant now paving the way for market introductions – so far two commercial plants

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 862674

Increased value from the protein concentrate

Basic scenario: Feed alternative to soy meal (0.54 EUR/kg)

Speciality feed

- Extra high protein purity and digestibility e.g. for fish and young animals
- Optimized amino acid profile (e.g. higher cysteine)
- Utilization of high fat content (primarily α-Linolenic acid)
- Pre- & pro- biotic effects via fermentation of the products

Food protein

- New source of plant based protein for consumption
- New source of functional protein for the food ingredient market

Increased value of the fibre

Basic scenario: Feed for ruminants or substrate to biomethane (ca 0.13 EUR/kg)

Thermal conversion, e.g. Pyrolysis

- Supply of internal energy needs for heating and drying
- Biochar production
- Biooilproduction

Further conversion of the fibre fraction.

Lignocellulosic biorefinery (LCF-Biorefinery)

Applications in Biomaterials

- Insulation materials
- Bio-composites
- Packaging
- Biobased textiles

29th GENERAL MEETING JUNE 26-30, 2022 - CAEN, FRANCE

2020-2023

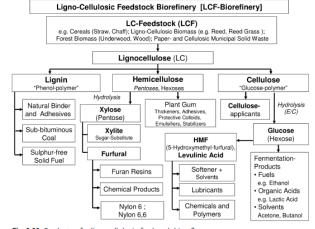
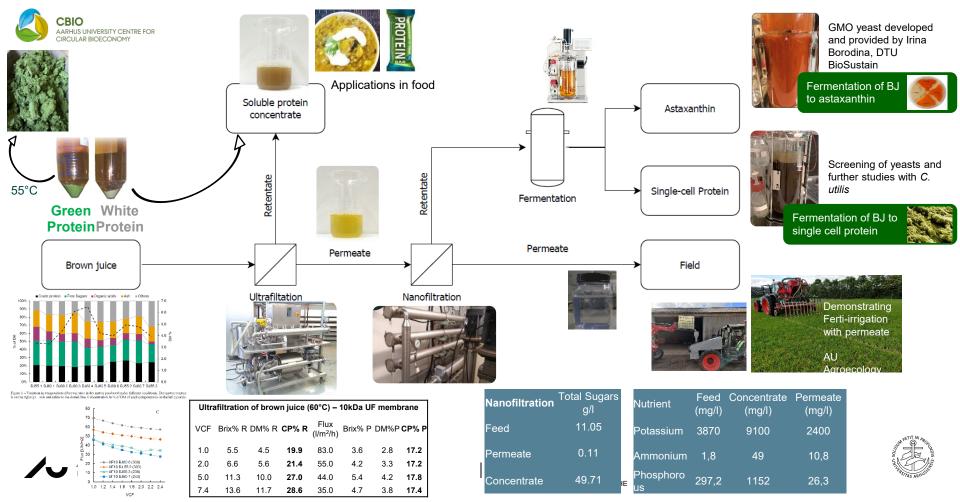



Fig. 1.11 Products of a lignocellulosic feedstock biorefinery (LCF-biorefinery, Phase III) [78, 79, 95].

Utilization of soluble compounds in the residual juice

Coupling the benefits of grasslands and green biorefining can deliver raw material for new biobased, local products AND ecosystem services

THANK YOU FOR LISTENING

Mile og Fodevareninssteriet

dlo

Questions are most welcome!

Contacts:

Uffe.Jorgensen@agro.au.dk

AARHUS UNIVERSITET

CBT CENTER FOR BIOREFINING TECHNOLOGIES

INSTITUT FOR INGENIØRVIDENSKAB

- skj@anis.au.dk
- maj@bce.au.dk

mıdt

GRØNBIORAF

DEMONSTRATION SCALE TECHNOLOGY PLATFORM RESEARCH AND DEVELOPMENT IN GREEN BIOREFINING

Interreg Öresund-Kattegat-Skagerrak European Regional Development Fund FUROPEAN UNION **Green Valleys**

Alfa Max Bioraf

