Utilizing unsupervised learning to improve sward content prediction and

herbage mass estimation

Paul Albert¹², Mohamed Saadeldin¹³, Badri Narayanan¹³, Brian Mac Namee¹³, Noel O'Connor¹², Deirdre Hennessy¹⁴ Aishing H. O'Connor¹⁴, Kevin McGuinness² Vistamilk SFI Centre¹, Dublin City University²,

University College Dublin³, Teagasc⁴

Deep regression

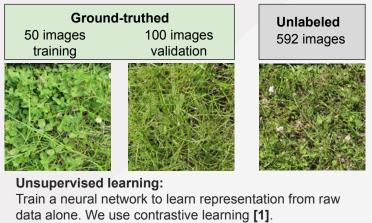
Biomass prediction
Dry herbage mass
650.4 kg DM/ha

- Dry biomass percentage
- 75.65% grass
- 18.83% clover
- 5.52% weeds
- Grass height

8.2 cm

INTRODUCTION

Deep learning models are performant but require large amounts of labeled training data


Harvesting and ground-truthing herbage samples is time consuming because elements have to be **separated by** hand

Can **unlabeled images** be used to improve the performance of a deep learning model for herbage biomass prediction ?

MATERIALS AND METHODS

Dataset presentation:

Harvested in July 2020 at the Moorepark Teagasc grass research centre near Cork, Ireland

RESULTS

Because the neural network learned relevant initial features on the unlabeled images, we reduce the final biomass estimation errors.

Table 1: RMSE errors on a held out validation set

	Herbage mass (kg DM/ha)	Herbage height (cm)	Grass (%)	Clover (%)	Weeds (%)	Composition avg. (%)
Baseline	332.02	1.94	12.71	10.28	3.97	8.98
Unsup pretrain	245.97	1.48	5.54	4.92	2.85	4.44

CONCLUSION

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

Unlabeled images were used to reduce the error of the deep regression model

Possible applications on phone devices to help farmers predict herbage composition precisely. This is a hard visual task for humans.

Guide decisions for targeted nitrogen fertilization and improve feed palatability and milk production

[1] Lee, Kibok, et al. "i-mix: A domain-agnostic strategy for contrastive representation learning." *ICLR* (2020).

Digitalising Dairy

