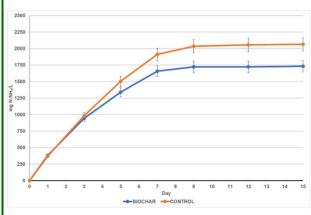

The biochar decreases the ammonia emissions of cattle slurry

Vicente F, Baizán S, Menéndez M, Martínez-Fernández A.

Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA). Carretera AS-267, PK 19, 33300 Villaviciosa (Asturias) Spain. fvicente@serida.org

Introduction



Material and Methods

Slurry with 2% of biochar vs. Slurry non treated

- Trial carried out in duplicate bottles with three incubation batches extended for 15 days each one
 NH₃ analysis every 2 days until the end of each batch
- Slurry dry matter, ash and nitrogen contents analyzed at the beginning and at the end of each batch
 Results

Slurry composition (kg/m³) before start the study (Pretreated, day 0) and after incubation period (day 15) with 2% biochar (Biochar) or without biochar addition (Control)

	Pre-treated	Biochar	Control	s.e.	Р
Dry matter	35.38	51.29	38.81	11.870	0.310
Ash	8.37	11.06	9.86	3.908	0.713
Nitrogen	0.82	1.05	0.89	0.252	0.555
					/

Ammonia emission evolution, in mg/L of slurry, according to treatment with or without biochar addition

Conclusions

- The addition of 2% biochar to cattle slurry reduces ammonia emissions to the environment by up to 16%.
- The nitrogen concentration of biochar-treated slurry was higher although not statistically significant.
- The biochar has potential as an ammonia binder in cattle slurry and thus as an agent to mitigate environmentally damaging nitrogen losses.

Funding by: FICYT PCTI IDI2021-000102 Co-funding ERDF Serida.org @SeridaAst @NySA_SERIDA @SeridaAst