

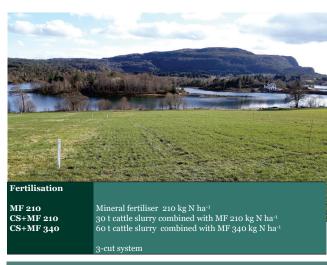
Long-term grassland productivity with and without ploughing

Ievina Sturite ¹ and Samson Øpstad²

Aim

To test different renovation strategies of 25-years old sward. We hypothesised that sod-seeding after chemically fellow improves grassland productivity equally than reseeding by ploughing.

Introduction


Norwegian milk and meat farming located in marginal areas.

Unfavourable weather conditions resulting in limiting ploughing and reseeding activities.

There is a need for alternative renovation strategies.

The long-term trial established at Fureneset in 1974 61°18'N 5°4'E 15 m asl

Permanent grassland established in 1974 (PG)
Semi-permanent grassland plots established in 1991 was either renewed by ploughing (S-PGp) and sod-seeding (S-PGs) in 2016/17 and 2020.
Frequently ploughed and reseeded treatments renewed in 2016 (Ley-12 and Ley-6)

Results A 14 10 10 PG S-PGs S-PGp LEY-12 LEY-6 MF210 □ CS+MF340

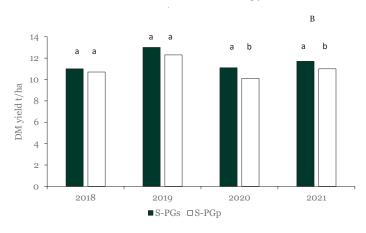
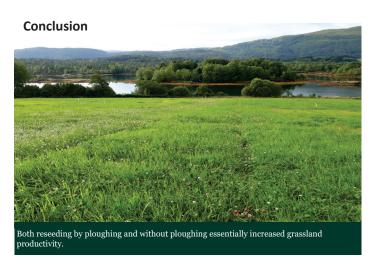



Figure 1 Average DM yield for four production years (2018-2021) for permanent grassland (PG; A), semi-permanent grassland sod-seeded (S-PGs) and reseeded after ploughing (S-PGp; A and B) and reseeded ley (Ley -12 and Ley -6; A) fertilised with mineral fertiliser only (MF 210) or cattle slurry in combination with mineral fertiliser (CS+MF 210 and CS+MF 340). Different letters denote differences within renewal strategies

Project funded by a grant from the Norwegian Research Funds for Agriculture and Food Industry (FFL/JA 255176) "Smart renewal of long-term grassland: towards higher productivity and profitability"

